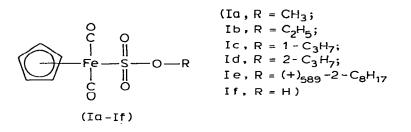
Preliminary communication

ALKYLSULFITO, BISULFITO AND SULFITO COMPLEXES OF η^{5} -CYCLOPENTADIENYLDICARBONYLIRON(II)

CRAIG A. POFFENBERGER and ANDREW WOJCICKI*

The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received October 25th, 1978)


Summary

Alkylsulfito complexes η^5 -C₅H₅Fe(CO)₂S(O)₂OR (R = CH₃, C₂H₅, n-C₃H₇, i-C₃H₇) have been prepared by reaction of $[\eta^5$ -C₅H₅Fe(CO)₂H₂O]BF₄ with Na[S(O)₂OR] (R = CH₃, C₂H₅) and the respective alcohol as solvent. These products may be interconverted by the use of the appropriate alcohol at reflux; such exchange occurs also at 25°C in the presence of HBF₄. Reaction of η^5 -C₅H₅Fe(CO)₂S(O)₂OCH₃ with (+)₅₈₉-2-C₈H₁₇OH and HBF₄ followed by treatment of the optically active product (+)₅₈₉- η^5 -C₅H₅Fe(CO)₂S(O)₂OC₈H₁₇ with CH₃OH and HBF₄ regenerates (+)₅₈₉-2-C₈H₁₇OH with unchanged specific rotation. Hydrolysis of η^5 -C₅H₅Fe(CO)₂S(O)₂OR affords η^5 -C₅H₅Fe(CO)₂S(O)₂OH, which is a strong acid.

As part of an investigation of the comparative chemistry of organometallic complexes containing sulfur-oxygen ligands we have synthesized and examined some reactions of alkylsulfito compounds of the type η^5 -C₅H₅Fe(CO)₂S(O)₂OR (I). Previously reported complexes of η^5 -C₅H₅Fe(CO)₂ with sulfur-oxygen ligands include η^5 -C₅H₅Fe(CO)₂S(O)₂R [1], η^5 -C₅H₅Fe(CO)₂OS(O)R [2], η^5 -C₅H₅Fe(CO)₂-S(O)OR [3], η^5 -C₅H₅Fe(CO)₂OS(O)₂R [4], [η^5 -C₅H₅Fe(CO)₂]₂S(O)₂ [5], and [η^5 -C₅H₅Fe(CO)₂S(O)₂]₂ [6]. Interest attaches to alkylsulfito complexes in that the S(O)₂OR ligand may be viewed as the product of reaction of coordinated SO₂ with OR⁻; this presumed behavior finds a strong analogy in the formation of carboalkoxy ligands, C(O)OR, by nucleophilic attack of OR⁻ on ligated CO, the reaction being reversed upon treatment of the MC(O)OR with acid [7]. Thus, neutral MS(O)₂OR complexes represent possible precursors of cationic metal-SO₂ species, which may exhibit interesting reactions with nucleophiles.

Although examples of alkylsulfito complexes are known for nickel [8], palladium [9-11], platinum [10-12], cobalt [8], and ruthenium [13,14], no general synthetic routes to such compounds have been developed. Metal—sulfur bonding was established in $[Ni(S(O)_2OC_2H_5)(np_3)]BF_4 \cdot 0.5C_2H_5OH \cdot 0.5H_2O$ (np₃ = tris(2-diphenylphosphinoethyl)amine) by X-ray crystallography [8].

We now find that reaction of $[\eta^5 - C_5H_5Fe(CO)_2H_2O]BF_4$ [15] with a slight excess of Na[S(O)_2OR] [16] in ROH (R = CH₃, C₂H₅) for 12 h at 25°C affords $\eta^5 - C_5H_5Fe(CO)_2S(O)_2OR$ (Ia, Ib). Yields of ca. 50% have been realized after removal of the solvent, extraction of the residue with CHCl₃, and chromatography of the extract on Florisil with 5/1 CHCl₃/acetone.

Since only the methyl and the ethyl salts $Na[S(O)_2OR]$ are sufficiently stable to isolation [16], the aforementioned procedure was slightly modified for the synthesis of other alkylsulfito complexes I.

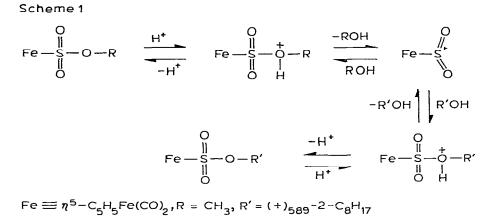
$$[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}H_{2}O]BF_{4} + Na[S(O)_{2}OR] + R'OH (excess) \xrightarrow{25^{\circ}C} (1)$$

$$\eta^{5}-C_{5}H_{5}Fe(CO)_{2}S(O)_{2}OR' + NaBF_{4} + ROH$$

In this manner the n-propyl and the isopropyl complexes, Ic and Id, were prepared using the respective alcohols and $Na[S(O)_2OC_2H_5]$. These reactions undoubtedly proceed via a facile equilibrium (eq. 2) as evidenced by the inter-

$$Na[S(O)_2OR] + R'OH \neq Na[S(O)_2OR'] + ROH$$
(2)

conversion of $Na[S(O)_2OCH_3]$ and $Na[S(O)_2OC_2H_5]$ through dissolution and storage in excess ethyl and methyl alcohol, respectively, at 25°C.


Complexes Ia—Id* are isolated as air-stable, yellow crystalline solids. In the mass spectra (70 eV, 75—80°C) of Ia and Ib the parent ion, P^+ , is either absent or weak; however, peaks corresponding to $(P - CO)^+$ and $(P - 2CO)^+$ are readily discernible. The ¹H NMR spectra of Ia—Id, presented in Table 1, display no unusual features and are entirely consistent with the assigned structures. The alkyl-sulfite ligands exhibit characteristic IR absorptions for $v(SO_2)$ and v(SO) (also in Table 1), which compare favorably with those reported for other MS(O)₂OR complexes [8—14].

Keeping a solution of Ia in ethyl alcohol at reflux for 24 h leads to the isolation of Ib in 65% yield; similarly, Ia results (53% yield) from Ib and excess boiling methyl alcohol. These and related conversions occur also, in higher yields (55–85%), at ambient temperatures in the presence of small amounts of HBF₄ (metal complex/HBF₄ molar ratio ca. 30/1).

^{*}The composition of Ib is supported by elemental analysis: C, 37.17; H, 3.46. $C_9H_{10}FeO_5S$ calcd.: C, 37.87; H, 3.52%.

$$\eta^{5} - C_{5}H_{5}Fe(CO)_{2}S(O)_{2}OR + R'OH (excess) \xrightarrow{HBF_{4}}{25^{\circ}C} \eta^{5} - C_{5}H_{5}Fe(CO)_{2}S(O)_{2}OR' + ROH$$
(3)

To shed light on the mechanism of this acid-promoted exchange, a reaction was carried out between Ia and a five-fold excess of optically active 2-octanol $([\alpha]_{589}^{22.5} +8.75^{\circ})$ in the presence of HBF₄. The isolated optically active iron complex Ie $([\alpha]_{589}^{22.5} +23.8^{\circ};$ other properties in Table 1) was then converted by the action of methyl alcohol and HBF₄ back to Ia and 2-octanol, which exhibited essentially unchanged rotation $([\alpha]_{589}^{21} +8.60^{\circ})$. This result indicates that the integrity of the O--C^{*} linkage in the 2-octoxy group is preserved in both the reacting alcohol and the iron alkylsulfito complex Ie. A reasonable mechanism which accords with these results is depicted in Scheme 1.

A feature of considerable interest in this mechanism is the involvement of a cationic iron— SO_2 complex; if such a species is indeed generated, it must exhibit high reactivity toward alcohol nucleophiles.

Hydrolysis of Ia or Ib for 16 h at 25°C, followed by removal of the water, extraction of the residue into CH_3CN , and evaporation of the extract to dryness, affords (95% yield) a yellow powder (If, spectroscopic data in Table 1; the deuterium analogue was obtained similarly in D₂O). This reaction is reversible, and Ia or Ib may be regenerated by treatment of If with the appropriate alcohol for 24 h at room temperature. Complex If represents the first well characterized organometallic analogue of organic sulfonic acids*, RS(O)₂OH, and, consistent with this analogy, it behaves as a strong acid when titrated with NaOH in aqueous solution, yielding an equivalent weight of 260 ($C_7H_6FeO_5S$ calcd.: 258).

Removal of H₂O from an aqueous solution of If neutralized with NaOH affords a yellow, air-stable solid, Na[η^5 -C₅H₅Fe(CO)₂SO₃] (II). Compound II, a 1/1 electrolyte in methyl alcohol (Λ_M 70 ohm⁻¹ cm² mol⁻¹ for 10⁻³ M solution) [17], shows IR SO stretching absorptions (Table 1) consistent with the presence of a sulfur-bonded SO₃²⁻ ligand (C_{3v} local symmetry) [18]. Recently

^{*}The formulation of η^5 -C₅ H₅ Fe(CO)₂ FeSO₃ H•H₂ O solely on the basis of elemental analysis and an IR spectrum is to be regarded as tentative [22].

MELTING	POINTS AND	SPECTROSCO	MELTING POINTS AND SPECTROSCOPIC DATA FOR NEW COMPLEXES	R NEW CO	MPLEXES		
Complex	M.p. (°C)	IR (cm ⁻¹) ^a					¹ H NMR (r,ppm) ^b
		v(CO)	$\nu(SO_2)$	μ(SO)	Other		
Ia	156	2064, 2007	2064, 2007 1214, 1095, 1061	116	p(SOC) 636	636	4.79s(C ₅ H ₅), 6.41s(CH ₃)
dI	96	2062, 2000	1214, 1088, 1020	971			4.60s(C ₅ H ₅), 5.99q(J7Hz, CH ₂), 8.77t(J7Hz, CH ₃)
Ic	9496	2068, 2014	1211, 1087	878			4.68s(C ₅ H ₅), 6.14t(J 6 Hz, SO ₃ CH ₂), 8.14m(J 6 Hz, J' 6 Hz, CH ₂ CH ₃), 9.08t(J' 6 Hz, CH ₃)
Id	164-165	2070, 2010	1211, 1112, 1084, 1065	918	v(SOC)	640	4,83s(C ₅ H ₅), 5,10sp ^C (J 6,1 Hz, CH), 8,25d(J 6,1 Hz, 2CH ₃)
Ic	118	2065, 2010	1212, 1088	966	ν(SOC) 634	634	4.79s(C ₅ H ₅), 5.27br(CH), 8.70–9.14m (5CH ₅ , 2CH ₅)
If	104	2062, 2018	1184, 1038	811	ν(OH) 2940, ν(OD) 2230	2940, 2230	-1.165(OH), 4.70s(C ₅ H ₅) ^d
II		2050, 1994	ν(SO ₃) 1129, 1107, 1084, 1072, 984	107, 1084			4.95s(C ₅ H ₅) ^c
^a KBr pellet complex pa solution.	t. All absorptio ttern; br, broa	ns are strong. d. ^c Two com	^b CDCl _a solutic ponent peaks of	n except a the presun	s noted. Al ned septup	obrevia let app	^a KBr pellet. All absorptions are strong. ^b CDCl _a solution except as noted. Abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; sp, septuplet; m, multiplet or complex pattern; br, broad. ^c Two component peaks of the presumed septuplet appear to overlap the C ₅ H ₅ resonance. ^d (CD ₃) ₂ SO solution. ^e D ₂ O/(CD ₃) ₂ CO solution.

ТАВЬБ 1 мият шимс водуше амть свремив оссоброг рать вор меш сомрт.в

C8

Jablonski prepared the complex $K[\eta^5-C_5H_5Fe(CO)_2SO_2]$ from $K[\eta^5-C_5H_5Fe(CO)_2]$ and SO_2 [3]. Complex II may be considered as the adduct of $Na[\eta^5-C_5H_5Fe(CO)_2]$ and SO_3 , a much stronger acid than SO_2 . Consistent with this analogy, II, unlike $K[\eta^5-C_5H_5Fe(CO)_2SO_2]$, was found not to react with CH_3I , even on heating at reflux in acetone/ethyl alcohol for 10 h.

Because of the structural analogy between Ia—Ie and esters of organic sulfonic acids, it was of interest to explore some comparative chemistry of the two classes of compounds. We find that dissolution of Ia or Ib in excess R_2NH ($R = CH_3$ or C_2H_5) at 25°C produces a yellow precipitate within 20 min. This solid was characterized by IR and ¹H NMR spectroscopy as $R_2NH_2[\eta^5-C_5H_5Fe(CO)_2SO_3]$, the reaction being as in eq. 4. It is noteworthy that a reaction analogous to that

$$\eta^{5}$$
-C₅H₅Fe(CO)₂S(O)₂OR + 2 R₂NH (excess)
 $R_{2}NH_{2}[\eta^{5}$ -C₅H₅Fe(CO)₂SO₃] + R₃N (?) (4)

between MC(O)OR and R_2NH to afford MC(O)NR₂ [7], i.e. nucleophilic displacement of OR from FeS(O)₂OR by R_2NH , did not take place. Esters of the sulfonic acids are known to alkylate the amines [19]; in fact, a few examples are known [20,21] in which 2 moles of the amine are involved in an anomalous alkylation similar to that observed in this study.

Studies continue on reactions of coordinated alkylsulfite ligand and on a possible role of the metal in such processes.

Acknowledgement

The authors gratefully acknowledge financial support of this research by the National Science Foundation.

References

- 1 J.P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 88 (1966) 4862.
- 2 S.E. Jacobson, P. Reich-Rohrwig and A. Wojcicki, Inorg. Chem., 12 (1973) 717.
- 3 C.R. Jablonski, J. Organometal. Chem., 142 (1977) C25.
- 4 C.A. Poffenberger and A. Wojcicki, to be submitted for publication.
- 5 P. Reich-Rohrwig, A.C. Clark, R.L. Downs and A. Wojcicki, J. Organometal. Chem., 145 (1978) 57.
- 6 N.H. Tennent, S.R. Su, C.A. Poffenberger and A. Wojcicki, J. Organometal. Chem., 102 (1975) C46. 7 R.J. Angelici, Acc. Chem., Res., 5 (1972) 335.
- 8 C.A. Ghilardi, S. Midollini and L. Sacconi, Inorg. Chem., 16 (1977) 2377.
- 9 M. Graziani, R. Ros and G. Carturan, J. Organometal. Chem., 27 (1971) C19.
- 10 R. Ros, G. Carturan and M. Graziani, Transition Met. Chem., 1 (1975/76) 13.
- 11 K. v. Werner, W. Beck and U. Böhner, Chem. Ber., 107 (1974) 2434.
- 12 D.M. Barlex and R.D.W. Kemmitt, J. Chem., Soc., Dalton, (1972) 1436.
- 13 A. Dobson and S.D. Robinson, Inorg. Chem., 16 (1977) 1321.
- 14 P.B. Critchlow and S.D. Robinson, Inorg. Chem., 17 (1978) 1902.
- 15 B.D. Dombeck and R.J. Angelici, Inorg. Chim. Acta, 7 (1973) 345.
- 16 A. Rosenheim and O. Liebknecht, Ber., 31 (1898) 405.
- 17 W.J. Geary, Coord. Chem. Rev., 7 (1971) 81.
- 18 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed., Wiley-Interscience, New York, 1970, p. 177.
- 19 J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, McGraw-Hill, New York, 1968, p. 331.
- 20 R.V. Vizgert, R.V. Sendega and V.M. Zhovnirchuk, J. Org. Chem. U.S.S.R. (Engl.), 5 (1969) 914.
- 21 K. Freudenberg and H. Hess, Ann., 448 (1926) 121.
- 22 D.S. Field and M.J. Newlands, J. Organometal. Chem., 27 (1971) 221.